1 Sensitivity to Samples

In this note we discuss whether our results are sensitive to alternative sam-
pling. In particular, we examine whether substituting our data with the data on
Charles Engel’s web-page, or extending the nominal exchange rate data changes
our results. We find that this is not the case. In particular, the Mean Group
model consistently produces half-lives under 2 years, while the pooled estimators
are biased upwards.

Table 1 shows the results from three datasets. Data 1 is the original Eurostat
price data combined with longer samples of nominal exchange rates obtained
from the IFS. Data 2 combines the original price data with data from Charles
Engel’s web page.! Data 3 is data from Charles Engel’s Web page only. As
data for the US is not available on his page, Data 3 refers to real exchange rates
relative to the UK.

In each case, coefficient homogeneity is strongly rejected. And as expected,
the pooled estimators overestimate the half-lives. The Mean Group estimator
consistently produces short half-lives as it allows for heterogeneity. Although
these results are very much in line with the estimates reported in the paper, a
number of new points do emerge:

1. The half-lives produced by heterogeneous estimators (MG estimator) are
slightly higher than before but in line with the results in the main paper
and the confidence intervals do not include the “consensus view”.

2. The mean group and RCM estimators are known to be asymptotically
equivalent. This should emerge much stronger in the new data as T has
increased. However, using the specification above, we do not observe this
if the lag structures are kept short (the RCM estimator produces half-lives
substantially higher than the Mean Group model - 25, 29 and 29 respec-
tively, using 12 lags in the autoregression). However, as figures 4 and 5
show, if the lag length is increased, the Mean Group and the RCM results
converge and the estimated half-lives fall to around 16 months. There is
no substantial impact of this on the Fixed Effects model.

A simple explanation for these observations goes as follows. We can show
that this is a result of underestimating the lag length. In particular, we demon-
strate that underestimating the lag length results in: i) an upward bias in MG
and RCM, where the impact on RCM is much larger. ii) Pooled estimators are
not really affected by this as the heterogeneity bias dominates.

1.1 Underestimating the lag length

How does underestimating the lag length affect Mean Group and
RCM?

IThe original data is corrected along the lines suggested by Charles Engel and combined
with the data available at http://www.ssc.wisc.edu/” cengel/data.htm. Exchange rate data is
from IFS.




1. In a cross section with a significant second lag, if an OLS regression of the
form yy = o+ pyi—1 + &¢ is run (i.e. if we underestimate the lag length),
p is biased upwards. As Figure 1 shows, this leads to a positive bias in
RCM and MG estimates.

2. RCM estimates are more biased than Mean group estimates. Again if we
omit a significant lag(s), the OLS estimates of the coefficients and the
Variance Covariance matrix are biased. Implication: the RCM weights
are biased. In the simple case of 2 cross sections with AR coefficients by
and by (constants=0) and covariances V; and Va , the RCM weight for
b, depends inversely on V; :
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If significant lags are ignored , Vi is biased downwards and b, is biased
upwards, thus Wy is higher. The experiment in Figure 2 confirms this.
Here estimates of the RCM weights and the corresponding coefficients were
obtained from a monte carlo experiment with 100 replications. The data
is drawn from an AR(2) model with coefficients on the second lag equal to
{-0.05,-0.1,-0.3}. Estimation is carried out assuming that the lag length
equals 1. The figure plots the scatter of the weights and the coefficients
(regression line). As the ignored variable becomes more important the
scatter shifts and indicates that higher persistence means higher weights.

How does this affect Fixed Effects?

In the presence of heterogeneity bias, we should observe the following: If
significant lags are omitted, estimated persistence is high, but as the lag length
is increased (i.e. you include the optimal number of lags) this does not make
much of a difference, simply because the upward heterogeneity bias (which in-
creases with the number of heterogeneous coefficients) cancels out the impact of
additional regressors. In other words we should observe little difference between
the model with the underestimated lag length and the model with the correct lag
length. This is clear from the empirical results below and from the experiment
in Figure 3. Figure 3 runs the same type of Monte-Carlo simulation as Figure
1. The results show little difference between the correct and incorrect models.

1

1.2 Results

Table 2 lists the estimates that we obtain using longer lags. The lag lengths are
chosen via a general to specific procedure. The following points are noteworthy:

1. Higher lags have little impact on fixed effect estimates. In each of the data
sets, an FE regression with 36 lags produces half-lives close to 30 months.

2. Mean Group and RCM produce almost identical results.

3. The half-lives from these heterogeneous models are very similar to those
reported in the paper.



2 Conclusions

This note set out the results of robustness checks on our original estimates. We
find that extending the sample or using Charles Engel’s data has little impact
on our estimates. We consistently obtain results very similar to our original ones
using the Mean Group model. Figures 4 and 5 show that this is true for every
possible lag length. A number of new points (regarding the RCM estimator) do
emerge, but we show that they are a result of model mis-specification.



3 Tables and Figures

Table 1
Piji =g+ Yy PPija—k + it
Data 1 Data2 Data 3

Method K |>Yp Half-Life | CI Sp Half-Life | CI Sp Half-Life | CI
OLS 12 | 0.9997 | 2303 1283,00 | 0.999741 | 2836 1864,00 | 0.999903 | 6921 2283,
FE 12 | 09735 | 30 22,35 0.978634 | 37 31,40 0.978779 | 31 24,36
MG 12 | 0.9524 | 19 13,22 0.961864 | 23 17,24 0.96689 21 10,23
HO: 6, = 6¢ 3065[0.00] 3063[0.00] 1831[0.00]
HO: g8, = ﬁb 25.0[0.00] 72.3[0.00] 93.9[0.00]

Notes: “a” is the Swami test for homogeneity and “b” is the Hausman test for homo-

geneity. The CI’s are calculated via non-parametric bootstrap based on 500 replications.



Table 2

K
Pije =g+ 3 4y Prbigt—k + €t

Data 1 Data2 Data 3
Method | K | > p Half-Life | CI >op Half-Life | CI >p Half-Life | CI
FE 36 | 0.9652 | 28 16,30 | 0.97159 33 20,38 | 0.976057 | 26 16,39
RCM 36 | 0.9260 | 16 14,18 | 0.947941 | 18 15,25 | 0.9714 16 15,25
MG 24 | 0.9439 | 17 14,18 | 0.9540 20 16,25 | 0.965960 | 16 15,27
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Data is generated from the following dgp:

Yit = Qi + (1 —+ 7]1‘,1) Yit—1 — (01 -+ 771‘,2) Yit—2 + €4t where T]i~N(0, 0002) The

solid Line shows the distribution of estimates obtained when an AR(1) model is estimated

using the generated data. The dotted line is the distribution of the sum of AR coefficients

T=250.

when the correct lag length is used. Results are based on 1000 replications with N=220,
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The figure plots the relationship between RCM weights and cross section specific coefficients.
Data is generated from the following dgp:
Yip =i+ (py +151) Vi—1 + (P2 + Mi2) Yii—2 + €i¢ such that > p = 0.9,
P = {—0.05, —-0.1, —0.3} and 777;~N<0’ 0.002). Estimation is carried out assuming that
the true model is AR(1). Results are based on 100 replications with N=220, T=250.



Fixed Effects
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Figure3
Data is generated from the following dgp:

Yir = 0 + (1 + 772-,1) Yit—1 — (0.1 + 772-,2) Yit—2 + € ¢ where 17;"N(0,0.0002). The
solid Line shows the distribution of estimates obtained when an AR(1) model is estimated
using the generated data. The dotted line is the distribution of the sum of AR coefficients

when the correct lag length is used. Results are based on 1000 replications with N=220,
T=250.
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